A system for

Process Checkpointing and Restarting

*

(Using a core dump)

Asim Shankar

April 19, 2003

Abstract

This report describes a system for checkpointing
and restarting UNIX processes. It differs from some
existing implementations in that (a) It does not
require the executables to be linked with library,
so processes can be checkpointed without change
and more interestingly, (b) the manner in which
a checkpointed process is restarted. Other sys-
tems such as [ckpt] [esky] have a complex mech-
anism of restoring the stack and register state of
the checkpointed process as both are also used by
the restoration code. This system seems to be sim-
pler as the restarted process and the restoration
code are in independent address spaces. The sys-
tem runs only on user-level code and requires no
modifications to the kernel.

1 Objective

The core file contains a complete memory dump of
the process, thus in theory it should be possible to
restore the process to the same state it was in when
the core was dumped.

However, there are many unanswered questions
when it comes to restarting from this state. What
happens to the open file descriptors? Files may
have changed, how do you handle sockets, pipes,
seeks etc. Then there are issues with process ids -
does the process id have to be the same as before?
What about the parent-child relationship? Signal
handling state - what signals are blocked? How

*http://www.geocities.com/asimshankar/
checkpointing/

does the process see the time that has elapsed since
the checkpoint?

Answers to these questions would affect what ex-
actly does one mean by “restarting” a process from
the checkpointed state and how to go about it.
However, one would notice that for jobs that are
essentially compute intensive, where inter-process
communication and signal handling aren’t the ma-
jor point of concern - the process address space has
all the information necessary. The point is that
restarting from the address-space dump in the core
can serve a worthwhile purpose.

2 Result

The result so far is a system that can checkpoint
and then restart any process along with file descrip-
tors, with the following caveats:

e File descriptors of only regular files, directories
and symbolic links can be checkpointed. No
character/block devices, sockets or pipes

e Signal handlers are not restored (default ones
are used)

e Processes that have used dlopen() to open a
dynamic library are not restarted successfully

e Programs must be single threaded

e Only a single process will be checkpointed,
thus programs that use fork(), exec() (or
other things like system() and popen()) are
in trouble

http://www.geocities.com/asimshankar/checkpointing/
http://www.geocities.com/asimshankar/checkpointing/

e Programs that use the mmap() call to map
files to the process’ address space cannot be
restarted

Given these limitations, which some other check-
pointing systems share, it seems that things are
done much more simply here than in other systems.
Section [4] explains why.

3 Other Systems

Other wuser-level restarting systems include
[libckpt], which requires that programs be linked
to the libckpt library before they can be check-
pointed. This system looks into details of making
the checkpointing process efficient and less
time-consuming.

[ckpt] developed at the University of Wisconsin is
another user-level library that uses the environment
variable LD_PRELOAD to install a signal handler
which checkpoints the process. The data dumped
by this handler is almost exactly what would be
found in a core dump file. [ckpt| does not require
the process to be linked to any special library and
hence processes can be checkpointed without hav-
ing to recompile/link them. Restarting is done by
having a restart process read the checkpoint file
and overwrite its own address-space with the data
in the checkpoint file. This is a tricky and involved
process and while restoring the code and data of
the checkpointed process one must ensure that the
code and data of the restart process is not cor-
rupted. The system doesn’t provide support for
file descriptors.

lesky] is another user-level system that supports
file descriptors, mmap () and dlopen(). Though, it
appears that it also has to handle restoration of the
stack and registers with care as they are in use by
the restoration code itself.

Versions of SGI’s IRIX and Cray’s UNICOS op-
erating systems provide some kernel support that
make possible their checkpointing and restarting
utilities. In this implementation, we use the core
dump (done by the kernel) as the checkpoint of the
executing process.

4 Methodology

Here’s an overview of the steps the restart utility
takes in order to restart a process given the exe-
cutable file and the core dump file:

1. Open the executable and core files and read
their ELF headers

2. From the NOTES program header of the core
file, get the PR_.STATUS structure (this has
the register values) of the checkpointed pro-
cess.

3. fork(), we now have a CHILD process (which
will be the restarted image) and the PARENT
process (which sets up the child)

4. CHILD: ptrace(PTRACE_TRACEME,...) and

then exec () the executable file

5. PARENT: Setup a breakpoint in the child
This is done as follows: Store the
struction in the child at the entry point
of the executable and replace it with the
INT3 instruction (opcode 0xCC). Then do a
ptrace (PTRACE_CONT, ...). This allows the
child process to run till it reaches the en-
try point (normally the address of the _start
function). Once here, it will execute the INT3
instruction which causes a SIGTRAP to be gen-
erated and returns control to the parent pro-
cess. (Allowing the child to run till the en-
try point allows the address space to be ini-
tialized and code to be loaded). In the case
of statically compiled binaries (e.g.: gcc with
-static), instead of the entry point, we would
want to break at the address of main()).

in-

6. PARENT: With the help of the LOAD sections
in the core file, restore the address space of the
child.

(The program headers with type LOAD spec-
ify the virtual address and the offset in the core

file where the contents of that address can be
found)

7. PARENT: Restore the registers of the child
(part of the PR_.STATUS structure present in
the NOTES in the core file).

8. PARENT: Detach the
(ptrace (PTRACE_DETACH, . ..))

child

9. The CHILD process is now the restored
image of the checkpointed process

The use of the exec() call and breaking at the
entry point of the program handles the initializa-
tion of the process’ address space and loading the
executable code of the program and the used dy-
namic libraries (except those explicitly mapped by
dlopen()). [ckptl [esky] handle the restart by mak-
ing the restart process overwrite its own address
space. This can be quite complicated as one must
make sure that the code of the restart process re-
mains intact and there are a host of related issues
that must be carefully dealt with. The method-
ology above is much simpler as the address space
of the restart process and the restarted process are
completely independent.

File Descriptors - File descriptors are handled
with the help of a dynamic library that must be
put into the LD_PRELOAD environment variable.
This library installs a special signal handler for the
SIGQUIT signal which dumps information on the
open file descriptors to a text file. This text file is
then read in during the restart process mentioned
above after the fork() and before the exec() and
file descriptors are restored with their offsets.

5 Implementation

5.1 Preamble

Based on the methodology described above, a sys-
tem was implemented. Some things regarding the
implementation:

e The system works on Linux and requires ker-
nel 2.4 or above
(The mmap2() system call is used to allocate
pages to the process after the program was
exec()ed. Kernel 2.2 doesn’t seem to have
this call implemented)

e The “checkpoint” file used is an ELF core
file with type ET_CORE. This implementation
works on the TA32 architecture (The architec-
ture affects, among other things, the registers
available etc.).

e In such a system, the stack starts at
Oxbfffffff and “grows” to lower addresses

e The .text, .data and .bss segments of the
executable are loaded at 0x0804000. Dynamic
libraries are loaded by 1d at 0x4000000 on-
wards

5.2 Checkpointing

Checkpointing in this system simply means gener-
ating a core dump. Here we describe ways to do
that and the slightly different methodology used to
checkpoint file descriptors (which are not check-
pointed in the core dump).

5.2.1 Using a signal

There are some signals (SIGSEGV, SIGQUIT among
others) whose default disposition is to cause the
process to dump core and quit. Thus, one way of
creating a checkpoint for a running process is to
send it the SIGQUIT signal. There is a limit to the
allowable size of this core dump and many times
the default setting is to not allow the core file to be
created. To remedy this, before running the process
type the following in your shell (bash):

ulimit -c unlimited

5.2.2 Using gdb’s gcore command

NOTE: For this we require gdb version 5.2 or
greater (which implement the gcore command).
A debugger can be attached to a running process
and then used to manipulate it. gdb has a com-
mand “gcore” that creates a core dump of the pro-
cess. In fact, with the debugger you can bring a
process to a safe state before dumping core. For
example, if the process opens sockets, does some
processing and then closes the sockets then you can
use gdb to set a break point where all sockets are
closed and then create a core dump. Thus, when
the process is resumed from the core file, there were
no open socket fds to worry about. To attach gdb
to a running process use

gdb <executable filename> <process id>

5.2.3 Checkpointing file descriptors

The file descriptor table is maintained by the ker-
nel and thus doesn’t lie in the process’ address
space. Therefore, information on open file descrip-
tors doesn’t seem to be present in the core file.

Furthermore, various issues arise when trying to
restore them, for example, what do you do with
sockets and pipes? What happens if the file is
moved? etc. This system however, provides rudi-
mentary support for regular files (regular meaning
files/directories as opposed to sockets or pipes). On
receipt of a SIGQUIT signal, we store for each open
file descriptor - its descriptor, filename, offset and
flags and write all this information into another file.
The default signal handler is then restored and the
process is sent another SIGQUIT signal which forces
a core dump. Information on open file descriptors
is taken from /proc/self/fd.

Use of this special signal handler does not
require any relinking, we use the environ-
ment variable LD_PRELOAD to load our library
(1ibsavefds.so) which installs the special signal
handler.

In summary, to checkpoint a process with file
descriptors, ensure that libsavefds.so is present in
LD_PRELOAD before starting the process and
then when you need to checkpoint it, send the pro-
cess a SIGQUIT signal.

6 The restart utility

The core component of this system is the restart
program. Not much had to be done for check-
pointing as we basically ask the kernel for a core
dump to create the checkpoint (checkpointing file
descriptors uses a special library in LD_PRELOAD).
This program essentially implements the method-
ology explained in Section .

The usage of this utility is shown in Fig.
Special mention must go to the -b option which is
useful when it comes to statically linked executa-
bles. The -b option takes an address as argument,
which is the address at which the exec()ed pro-
cess is paused and the state of the checkpointed
process is restored. The system requires that by
executing all instructions in the program till this
breakpoint, the program code and code of required
dynamic libraries are loaded into the address space
of the process (1d does it’s job). Most executa-
bles are dynamically linked to 1ibc and 1d and the
entry point of these executables (_start function)
has the characteristics required of the breakpoint
address. However, in the case of statically linked
executables, the entry point is often 0 and at this

address even the program code has not been loaded.
Hence, for such executables an acceptable break-
point would be the address of the main() function.
One could look up the symbol table and determine
this address, however in case symbols have been
stripped, the -b option can be used to specify it.

Acknowledgments

We would like to thank Dr. Deepak GuptaEl, our
course instructor, for his valuable guidance and the
creators of Google for the search engine.

References

[ckpt] Victor C. Zandy. ckpt: User-level

checkpointing. (University of Wiscon-
sin), http://www.cs.wisc.edu/"zandy/
ckpt/.

[esky] David Gibson. http://esky.
sourceforge.net.

[libckpt] James S. Plank, Micah Beck, Gerry
Kingsley, and Kai Li. libckpt: A
portable checkpointer for unix. (Ap-
peared in USENIX Winter 1995),

http://www.cs.utk.edu/ plank/
plank/www/libckpt.html.

Thttp://www.cse.iitk.ac.in/users/deepak

http://www.cs.wisc.edu/~zandy/ckpt/
http://www.cs.wisc.edu/~zandy/ckpt/
http://esky.sourceforge.net
http://esky.sourceforge.net
http://www.cs.utk.edu/~plank/plank/www/libckpt.html
http://www.cs.utk.edu/~plank/plank/www/libckpt.html
http://www.cse.iitk.ac.in/users/deepak

Usage: restart [options] <executable filename> <core filename>

Options:
-b, --breakpoint=ADDRESS
-f, ——filedes[=FILENAME]
-n, —--nostop
-s, ——-select
-V, —--verbose
-w, —-wait
-h, --help
-v, —--version

When execing the program to be restarted then run till given
instruction ADDRESS before restoring address space and registers
(Default is the entry point of the executable, which is generally
the address of the _start function, thus all dynamic libraries are
loaded by this time. Specifying this is useful for statically linked
executables (Compiled with the --static flag in gcc)).

Restore file descriptors from FILENAME created by

libsavefds.so (Default FILENAME is "filedescriptors")

Do not pause the restarted process

(By default the process must be sent a SIGCONT to continue)

Make detailed selections while the address space is restored

Be a bit verbose about what is being done while restarting

Wait for restarted process to finish execution

Display this help and exit

Display version information and exit

Figure 1: Usage of the restart utility

	Objective
	Result
	Other Systems
	Methodology
	Implementation
	Preamble
	Checkpointing
	Using a signal
	Using gdb's gcore command
	Checkpointing file descriptors

	The restart utility

